1,629 research outputs found

    Exclusive Radiative Decays of W and Z Bosons in QCD Factorization

    Full text link
    We present a detailed theoretical analysis of very rare, exclusive hadronic decays of the electroweak gauge bosons V=W, Z from first principles of QCD. Our main focus is on the radiative decays V->M+gamma, in which M is a pseudoscalar or vector meson. At leading order in an expansion in powers of Lambda_{QCD}/m_V the decay amplitudes can be factorized into convolutions of calculable hard-scattering coefficients with the leading-twist light-cone distribution amplitude of the meson M. Power corrections to the decay rates arise first at order (Lambda_{QCD}/m_V)^2. They can be estimated in terms of higher-twist distribution amplitudes and are predicted to be tiny. We include one-loop O(alpha_s) radiative corrections to the hard-scattering coefficients and perform the resummation of large logarithms [alpha_s log(m_V^2/mu_0^2)]^n (with mu_0=1 GeV a typical hadronic scale) to all orders in perturbation theory. Evolution effects have an important impact both numerically and conceptually, since they reduce the sensitivity to poorly determined hadronic parameters. We present detailed numerical predictions and error estimates, which can serve as benchmarks for future precision measurements. We also present an exploratory study of the weak radiative decays Z->M+W. Some of the decay modes studied here have branching ratios large enough to be accessible in the high-luminosity run of the LHC. Many of them can be measured with high accuracy at a future lepton collider. This will provide stringent tests of the QCD factorization formalism and enable novel searches for new physics.Comment: 37 pages (+ appendices and references), 9 figures and 9 tables. v2: Comparison with recent ATLAS data added, minor revisions + some references added. v3: decay constant of the phi and omega mesons updated and few typos fixed; version published in JHE

    Dipole operator constraints on composite Higgs models

    Full text link
    Flavour- and CP-violating electromagnetic or chromomagnetic dipole operators in the quark sector are generated in a large class of new physics models and are strongly constrained by measurements of the neutron electric dipole moment and observables sensitive to flavour-changing neutral currents, such as the B→XsγB\to X_s\gamma branching ratio and ϵ′/ϵ\epsilon'/\epsilon. After a model-independent discussion of the relevant constraints, we analyze these effects in models with partial compositeness, where the quarks get their masses by mixing with vector-like composite fermions. These scenarios can be seen as the low-energy limit of composite Higgs or warped extra dimensional models. We study different choices for the electroweak representations of the composite fermions motivated by electroweak precision tests as well as different flavour structures, including flavour anarchy and U(3)3U(3)^3 or U(2)3U(2)^3 flavour symmetries in the strong sector. In models with "wrong-chirality" Yukawa couplings, we find a strong bound from the neutron electric dipole moment, irrespective of the flavour structure. In the case of flavour anarchy, we also find strong bounds from flavour-violating dipoles, while these constraints are mild in the flavour-symmetric models.Comment: 30 pages, 2 figures, 11 tables. v3: Misprints in table 8 corrected. Numerics and conclusions unchange

    Exclusive Radiative Decays of Z Bosons in QCD Factorization

    Full text link
    We discuss the very rare, exclusive hadronic decays of a Z boson into a meson and a photon. The QCD factorization approach allows to organize the decay amplitude as an expansion in powers of ΛQCD/mZ \Lambda_{\rm QCD}/m_Z\,, where the leading terms contain convolutions of perturbatively calculable hard functions with the leading-twist light-cone distribution amplitudes of the meson. We find that power corrections to these leading terms are negligible since they are suppressed by the small ratio (ΛQCD/mZ)2 (\Lambda_{\rm QCD}/m_Z)^2\,. Renormalization-group effects play a crucial role as they render our theoretical predictions less sensitive to the hadronic input parameters which are currently not known very precisely. Thus, measurements of the decays Z→MγZ\to M\gamma at the LHC or a future lepton collider provide a theoretically very clean way to test the QCD factorization approach. The special case where M=η(′)M=\eta^({}'{}^) is complicated by the fact that the decay amplitude receives an additional contribution where the meson is formed from a two-gluon state. The corresponding branching ratios are very sensitive to the hadronic parameters describing the η−η′\eta-\eta' system. Future measurements of these decays could yield interesting information about these parameters and the gluon distribution amplitude.Comment: 6 pages, 3 figures, 1 table, contribution to the proceedings of the 38th International Conference on High Energy Physics, 3-10 August 2016, Chicago, US

    Virtual Borders: Accurate Definition of a Mobile Robot's Workspace Using Augmented Reality

    Full text link
    We address the problem of interactively controlling the workspace of a mobile robot to ensure a human-aware navigation. This is especially of relevance for non-expert users living in human-robot shared spaces, e.g. home environments, since they want to keep the control of their mobile robots, such as vacuum cleaning or companion robots. Therefore, we introduce virtual borders that are respected by a robot while performing its tasks. For this purpose, we employ a RGB-D Google Tango tablet as human-robot interface in combination with an augmented reality application to flexibly define virtual borders. We evaluated our system with 15 non-expert users concerning accuracy, teaching time and correctness and compared the results with other baseline methods based on visual markers and a laser pointer. The experimental results show that our method features an equally high accuracy while reducing the teaching time significantly compared to the baseline methods. This holds for different border lengths, shapes and variations in the teaching process. Finally, we demonstrated the correctness of the approach, i.e. the mobile robot changes its navigational behavior according to the user-defined virtual borders.Comment: Accepted on 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), supplementary video: https://youtu.be/oQO8sQ0JBR

    Consistent Searches for SMEFT Effects in Non-Resonant Dijet Events

    Full text link
    We investigate the bounds which can be placed on generic new-physics contributions to dijet production at the LHC using the framework of the Standard Model Effective Field Theory, deriving the first consistently-treated EFT bounds from non-resonant high-energy data. We recast an analysis searching for quark compositeness, equivalent to treating the SM with one higher-dimensional operator as a complete UV model. In order to reach consistent, model-independent EFT conclusions, it is necessary to truncate the EFT effects consistently at order 1/Λ21/\Lambda^2 and to include the possibility of multiple operators simultaneously contributing to the observables, neither of which has been done in previous searches of this nature. Furthermore, it is important to give consistent error estimates for the theoretical predictions of the signal model, particularly in the region of phase space where the probed energy is approaching the cutoff scale of the EFT. There are two linear combinations of operators which contribute to dijet production in the SMEFT with distinct angular behavior; we identify those linear combinations and determine the ability of LHC searches to constrain them simultaneously. Consistently treating the EFT generically leads to weakened bounds on new-physics parameters. These constraints will be a useful input to future global analyses in the SMEFT framework, and the techniques used here to consistently search for EFT effects are directly applicable to other off-resonance signals.Comment: v1: 23 pages, 9 figures, 3 tables; v2: references added, typos corrected, matches version published in JHE

    This Far, No Further: Introducing Virtual Borders to Mobile Robots Using a Laser Pointer

    Full text link
    We address the problem of controlling the workspace of a 3-DoF mobile robot. In a human-robot shared space, robots should navigate in a human-acceptable way according to the users' demands. For this purpose, we employ virtual borders, that are non-physical borders, to allow a user the restriction of the robot's workspace. To this end, we propose an interaction method based on a laser pointer to intuitively define virtual borders. This interaction method uses a previously developed framework based on robot guidance to change the robot's navigational behavior. Furthermore, we extend this framework to increase the flexibility by considering different types of virtual borders, i.e. polygons and curves separating an area. We evaluated our method with 15 non-expert users concerning correctness, accuracy and teaching time. The experimental results revealed a high accuracy and linear teaching time with respect to the border length while correctly incorporating the borders into the robot's navigational map. Finally, our user study showed that non-expert users can employ our interaction method.Comment: Accepted at 2019 Third IEEE International Conference on Robotic Computing (IRC), supplementary video: https://youtu.be/lKsGp8xtyI
    • …
    corecore